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Prochazka A. Neurophysiology and neural engineering: a review. J Neuro-
physiol 118: 1292–1309, 2017. First published May 31, 2017; doi:10.1152/jn.
00149.2017.—Neurophysiology is the branch of physiology concerned with un-
derstanding the function of neural systems. Neural engineering (also known as
neuroengineering) is a discipline within biomedical engineering that uses engineer-
ing techniques to understand, repair, replace, enhance, or otherwise exploit the
properties and functions of neural systems. In most cases neural engineering
involves the development of an interface between electronic devices and living
neural tissue. This review describes the origins of neural engineering, the explosive
development of methods and devices commencing in the late 1950s, and the
present-day devices that have resulted. The barriers to interfacing electronic devices
with living neural tissues are many and varied, and consequently there have been
numerous stops and starts along the way. Representative examples are discussed.
None of this could have happened without a basic understanding of the relevant
neurophysiology. I also consider examples of how neural engineering is repaying
the debt to basic neurophysiology with new knowledge and insight.

neural engineering: neuroengineering; neural stimulators; neuroprostheses; co-
chlear implants; brain-computer interface; functional electrical stimulation

IT COULD BE ARGUED that neural engineering commenced in the
1750s, when Jan Swammerdam enclosed a muscle in a glass
tube containing water and activated it by tugging on its nerve,
in order to determine whether its volume changed. In the same
decade, Leopoldo Caldani electrically stimulated nerves with
the use of an electrostatic machine (Brazier 1984). By the end
of the eighteenth century, Giovanni Aldini and others had
begun stimulating the nervous system in humans with the use
of surface electrodes (Brazier 1988). First, Aldini performed
what would now be called proof-of-principle experiments on
the freshly severed heads of people who had just been guillo-
tined, placing electrodes on the face, on the brain stem, or in the
mouth. In the mid-nineteenth century Duchenne de Boulogne
used electrical stimulation to study human facial expressions
(Duchenne de Boulogne 1862). Duchenne’s photographs were
used by Charles Darwin in his arguments regarding the evolution-
ary nature of the expression of emotions (Darwin 1872).

Electrical stimulation was soon adopted by clinicians to
elicit muscle twitches, presumably to impress their patients
rather than to treat their disorders (Licht 1971; McNeal 1977).
By the mid-nineteenth century, induction coils enabled trains
of electrical current pulses to be delivered, which elicited
smoother muscle contractions. In the 1850s, the German in-
ventor Isaac Pulvermacher marketed a belt comprised of a

chain of batteries that delivered mechanically switched pulses
of electrical current to the wearer’s abdomen. Pulvermacher’s
chain was initially supported by the medical community (Bird
1851). Electrical belts and other garments became enormously
popular, selling in their hundreds of thousands by the 1880s.
However, vendors began making outlandish medical claims,
with the result that by 1920 the field had become thoroughly
discredited, as evidenced by articles in leading journals such as
the Lancet and the British Medical Journal (British Medical
Journal 1893).

By the mid-twentieth century, electrical stimulation of the
nervous system had seen a resurgence and it had become an
accepted clinical modality for pain mitigation, muscle strength-
ening, and rehabilitation. In 1956, with the development of the
transistor, it became feasible to manufacture stimulators that
could be implanted inside the body. This led to a remarkable
burst of innovation and experimentation in the subsequent two
decades. Devices that have their origin in this period include
the cochlear implant (Chouard 2015; Djourno et al. 1957;
Djourno and Eyries 1957), the cardiac pacemaker (Greatbatch
1962), the spinal cord epidural stimulator (Shealy et al. 1967),
sacral nerve and root stimulators (Brindley and Lewin 1968),
phrenic nerve and diaphragm pacers (Anagnostopoulos and
Glenn 1966; Johnson and Eiseman 1971; Van Heeckeren and
Glenn 1966), the foot-drop stimulator (Jeglic et al. 1970;
Liberson et al. 1961; Waters et al. 1975), and the intraspinal
stimulator (Friedman et al. 1972; Nashold et al. 1971b).
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This article focuses mainly on neural engineering devices
designed to treat nervous system dysfunction. To illustrate the
relationship between such devices and the neurophysiology
that underpins them, let us consider two examples: neurostimu-
lators (NSs) and brain-computer interfaces (BCIs).

NSs, also known as neuroprostheses, are devices that acti-
vate neural tissue to help restore lost function. Figure 1 gives
an idea of how rapidly this field is expected to grow over the
next few years.

The best-known and most successful implantable NS is the
cochlear implant, arguably the most advanced neural engineer-
ing device in existence. As of 2012, cochlear implants had
been implanted in over 320,000 people with severe senso-
rineural hearing loss worldwide (https://www.nidcd.nih.
gov/health/statistics/quick-statistics-hearing). Sound vibra-
tions are picked up by a microphone, typically located in an
earpiece. The vibrations are transduced into voltage signals
that are amplified, filtered, digitized, and resolved into
components by a microprocessor. The microprocessor en-
codes this information in a radio-frequency (RF) signal and
wirelessly transmits it to a pulse generator implanted under
the scalp, which in turn delivers interleaved or simultaneous
trains of stimuli to the sensory endings of the auditory nerve
via a delicate multielectrode array inserted into the scala
tympani of the cochlea. The evoked neural activity results in
the hearing and discrimination of complex sounds such as
speech and music. Parameters in the computer algorithms
that convert the incoming signals into patterns of stimula-
tion are fine-tuned through trial-and-error testing, whereby
the recipients report the sounds they hear. The development
of the cochlear implant relied on a detailed understanding of
the neurophysiology of the auditory system, the physics of
sound signals, the components of speech, electronics, com-
puter processing, RF transmission, and electrode-tissue in-
teractions. From an engineering point of view, a large
variety of technical problems had to be overcome, not least
those involving the multielectrode array (Chouard 2015;
Clark 1978; House 1976). Unexpected societal barriers that
soon arose are discussed below.

In a BCI, electrical activity is recorded from specific parts of
the brain, via penetrating microelectrode arrays, electrode ma-
trices resting on the brain surface, or electrodes attached to the
scalp. The recorded signals are amplified, digitized, and re-
solved into components by a computer processor. For example,
in a person with paralyzed arms neural activity signaling the

intent to grasp and move external objects is recorded from
motor areas of the cerebral cortex. The signals are decomposed
analytically, and the resultant intention-related signals may be
used to perform functional tasks with a robotic arm or to
emulate a computer mouse, allowing the paralyzed person to
use a computer. In the most recent research, the signals
recorded from the brain have been used to generate trains of
electrical stimuli delivered to muscle nerves via surface elec-
trodes, eliciting movements of the user’s own arm. In this case
the system is a combination of a BCI and a NS and has been
called a “neural bypass” (Bouton et al. 2016; Sharma et al.
2016).

The above systems have two basic things in common: they
sense one or more inputs and use this information to control
one or more outputs. The same is true of most neurophysio-
logical control systems. The inputs used in neural engineering
devices either can come from artificial sensors such as accel-
erometers, strain gauges, and photoelectric devices or can
come from the body itself, in the form of electrical activity of
muscle and neural tissues. The outputs can range from com-
puter displays and robotic arms to the recipient’s own limbs.

After the cochlear implant, the second most widely deployed
implantable NS is the spinal cord stimulator. This is a fully
implanted device that delivers trains of electrical pulses
through an electrode array that is implanted on the surface
of the dura mater, the membrane covering the spinal cord, or
on the surface of the spinal cord itself (Iwahara et al. 1991,
1992). Epidural stimulation is used to reduce chronic pain,
improve bladder control, and reduce spastic hyperreflexia.
In a typical epidural stimulator a therapist sets the stimula-
tion parameters with a wireless external programmer, and
after that the device delivers steady trains of pulses for long
periods of time. There is no continuous feedback control,
and therefore there are no sensors other than wireless or
magnetic on-off switches. The same is true of noninvasive
transcutaneous electrical stimulators (TENS units) for pain
mitigation, transcutaneous neuromuscular electrical stimu-
lators (NMES) for exercising and strengthening muscles,
implanted sacral nerve stimulators for bladder control, im-
planted phrenic nerve stimulators for respiration, implanted
vagus nerve stimulators for epilepsy and depression, and
deep brain stimulators for various motor and psychiatric
disorders, intractable pain, epilepsy, and Alzheimer’s dis-
ease. The mechanism of action in some of these cases is
assumed to be neuromodulation, an indirect effect mediated
by intracellular second messengers. This is in contrast to the
generally more rapid action of direct electrical excitation of
neurons or classical chemical neurotransmission via ligand-
gated postsynaptic receptors.

Sensing the Inputs

Artificial sensors. The number of artificial sensors that can
be deployed in a practical NS or BCI is insignificant when
compared to the vast number of biological sensory receptors in
the body. For example, foot-drop stimulators (NSs that activate
the pretibial muscles to lift the foot at the onset of the swing
phase of the locomotor step cycle) have at most two sensors, a
force transducer or switch signaling under-heel pressure and an
accelerometer signaling leg tilt. Another example is provided
by grasp-release stimulators, in which signals from a shoulder
or wrist sensor are used to control stimulation of muscles that

Fig. 1. Global neurostimulation devices market in US, by device, 2013–2024.
Reproduced from Grand View Research (2016) with permission.
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open or close the hand (Peckham et al. 1980; Prochazka et al.
1996). This is in contrast to the body’s thousands of muscle,
joint, connective tissue, and cutaneous receptors that provide
highly detailed, multivariate information to the central nervous
system (CNS) on the biomechanical state not only of the
moving limb but also of the entire body (Prochazka 2015a).
For example, in relation to proprioception (the sensing of the
body’s own movements), there are 25,000–30,000 muscle
spindles in the human body, including ~4,000 in each arm and
7,000 in each leg (Hulliger 1984; Voss 1971), nearly as many
Golgi tendon organs, and many more deep pressure receptors
and cutaneous receptors. In fact, it is interesting that NS
devices such as foot-drop stimulators and grasp-release stim-
ulators with only one or two sensors can significantly improve
motor function after the nervous system has been damaged.
This is because in some cases the sensing of simple events such
as unloading of the leg during the locomotor step cycle (Liber-
son et al. 1961) or extension of the wrist during manual
grasp-release actions (Prochazka et al. 1996) can suffice to
trigger transitions from one phase of a movement to the next.
It also shows that a single artificial sensor, when combined
with an electronic analyzer, can provide information that is
equivalent to the input from many biological sensory receptors.
Again, the cochlear implant provides a good example. Sound
vibrations impinging on a microphone are resolved electroni-
cally into many frequency components, just as the sound
vibrations transmitted from the tympanic membrane (eardrum)
to the cochlea are resolved into many frequency components
by the 3,000 or so inner hair cells that line the basilar mem-
brane of the cochlea. In this example a single artificial sensor
and an electronic analyzer can replicate the function of thou-
sands of biological sensors, albeit with a lower-frequency
resolution and amplitude range.

What are some other limitations of artificial sensors com-
pared with biological sensors? Artificial force and displace-
ment sensors can match individual cutaneous and intramuscu-
lar receptors in their sensitivity and amplitude range, but it has
proven difficult to attach them to body parts in ways that are
convenient, cosmetically acceptable, and reliable over the long
term. Under-heel switches and force sensors are generally held
within shoes, which rules out their use when walking barefoot.
In some functional electrical stimulation devices sensors are
held in the same enclosures as the stimulators (e.g., wrist
motion sensors, accelerometers, and leg tilt sensors; Prochazka
1997; Prochazka et al. 1997a; Stein et al. 2006). Tooth click
sensors (Prochazka 2003) and head motion sensors (Prochazka
2016) built into earpieces are used to trigger hand grasp and
release (e.g., Rehabtronics ReGrasp). Accelerometers and
EMG amplifiers have been used experimentally in closed-loop
tremor suppression systems (Gillard et al. 1999; Khobragade et
al. 2015; Prochazka et al. 1992).

It took many years for the hardware of hearing aids and
cochlear implants to be miniaturized to the point that they are
unobtrusive and function for many years. In the cochlear
implant, microphones and sound processors are generally ex-
ternal to the body. It was only recently that a fully implanted
device that included a microphone and sound processor entered
clinical trials (Briggs et al. 2008). Fully implantable hearing
aids that monitor incoming sounds and apply corresponding
mechanical vibrations to the ossicles have recently become
available commercially (Barbara et al. 2011; Bruschini et al.

2016; Martin et al. 2009). In a few NSs, mechanical sensors
have been implanted under the skin, for example, the micro-
phones just discussed and wrist joint displacement sensors used
with the Freehand upper limb device (Bhadra et al. 2002).

Visual systems in animals operate over an enormous range
of light intensities, though some artificial optical sensors sur-
pass them in terms of the range of detectable wavelengths
(infrared to X-ray). Visual NSs have been developed recently
that operate either by stimulating the visual cortex through elec-
trode arrays implanted on the cortical surface or via electrode
arrays attached to the back of the retina (see Table 2 for refer-
ences). These devices receive inputs from miniature video cam-
eras attached to goggles or glasses worn by the user. As in
cochlear implants, the signals are processed electronically to
derive trains of electrical pulses for delivery through multielec-
trode arrays. Learning algorithms are used to optimize this process
through postimplant trial-and-error testing with the recipients.

Artificial sensors tend to be energy intensive, so regular
battery charging or replacement is required. While this is
not a major problem for sensors external to the body, it
becomes a significant barrier for fully implanted systems.
The approach currently taken is to implant rechargeable batteries
that are charged through the skin by electromagnetic coupling.
The external charger must regularly be held on, or close to, the
body for significant periods of time, which can be inconvenient.

Sensing the body’s own neural signals. Inputs to NSs and
BCIs may be obtained from the body’s own neural input and
output signals, for example, by monitoring the activity of
neurons in the cerebral cortex (Schwartz 2016). Signals enter-
ing the spinal cord from muscle, joint, and skin receptors can
be intercepted at the dorsal root ganglia with the use of
implanted semimicroelectrode arrays (Loeb et al. 1977;
Prochazka et al. 1976; Weber et al. 2006). This has been
proposed as a means of providing intraspinal microstimulation
devices with the kinematic feedback needed to activate para-
lyzed limbs (Holinski et al. 2013; Weber et al. 2007) and also
as a means of restoring sensation by using the monitored
signals to control stimulation of somatosensory regions of the
brain (a “sensory neural bypass”) (Flesher et al. 2016). How-
ever, the technical barriers to long-term recording from periph-
eral nerves and dorsal root ganglia are formidable.

It is easier to record neural outputs indirectly, for example,
by recording the electromyogram (EMG) of muscles that are
still under voluntary control or even more simply by record-
ing the movements generated by these muscles (Peckham et
al. 1980; Prochazka et al. 1996). EMG control was first
exploited in the AutoMove, a stimulator commercialized in
the 1970s (van Overeem Hansen 1979). In this device, the
EMG of a muscle under weak voluntary control is monitored
through surface electrodes. When a preset threshold is
reached, the device switches to stimulation mode, activating
the same muscle through the same electrodes. This device,
now known as the NeuroMove, is used to this day in some
rehabilitation centers to strengthen paretic muscles after
stroke and spinal cord injury (Francisco et al. 1998; Knutson
et al. 2015).

Another approach is to use the EMG from a muscle under
volitional control to continuously control functional electrical
stimulation of a paretic or paralyzed muscle (Graupe et al.
1983, 1989; Hincapie and Kirsch 2007; Mercier et al. 2017;
Williams and Kirsch 2015). In another variant, a pair of
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stimulating electrodes is attached to the skin over a paretic
muscle. A pair of recording electrodes is attached at right
angles about halfway between them (Hodgson 1986; Thorsen
et al. 2001). This configuration minimizes artifacts in the EMG
signal when the muscle is stimulated. A blocking amplifier
eliminates any residual artifacts, making it possible to record
EMG from the muscle between stimulating pulses, thus boost-
ing voluntary contractions. When recording and stimulating

electrodes are implanted, the stimulus currents and therefore
the stimulus artifacts are smaller (Hincapie and Kirsch 2007;
Liu et al. 2014).

Brain activity can be recorded with surface electroencepha-
logram (EEG) electrodes (McFarland and Wolpaw 2003; Wol-
paw et al. 1991), implanted electrocorticogram (ECoG) elec-
trodes (Fig. 2) (Branco et al. 2017; Flint et al. 2017; Hotson et
al. 2016; Leuthardt et al. 2006; Vansteensel et al. 2016;
Vinjamuri et al. 2009; Wang et al. 2009), or implanted pene-
trating microelectrode arrays (Bouton et al. 2016; Sharma et al.
2016). Surface EEG signals tend to be small, variable, suscep-
tible to artifacts (especially eyeblinks), and poorly localized
because the sources (ensembles of cortical neurons) and the
recording sites are separated not only by a layer of cerebrospi-
nal fluid and the meninges but also by the skull and the scalp.
Nonetheless, EEG-based BCIs were highly represented at the
2016 Society for Neuroscience annual meeting. Furthermore,
in a recent study feedback-controlled functional electrical stim-
ulation driven by EEG signals enabled able-bodied subjects to
perform a tracking task with their forearms (Vidaurre et al.
2016). In theory, ECoG electrode arrays implanted subdurally
on the cortical surface, or epidurally on the dural surface,
should provide more localized multichannel signals than sur-
face EEGs. Research is underway to compare these modalities
(Flint et al. 2017).

Multiple single-cell recordings with penetrating intracortical
silicon microelectrode arrays provide the most localized and
information-rich signals, but this approach is also the most
invasive. With current devices the recordings degrade within a
year or so (Wodlinger et al. 2015), though it is possible to
extract useful information even after this has occurred (Perge et
al. 2013, 2014; Simeral et al. 2011). In 2013 an important
failure analysis of silicon microelectrode arrays was published
(Barrese et al. 2013). Of 78 arrays implanted in 27 monkeys,
the recording duration ranged from 0 to 5.75 yr, with a mean
of 387 days and a median of 182 days. Fifty-six percent of
failures occurred within a year, mechanical failures involving
leads and connectors being the most common (48%) (Fig. 3).

Fig. 2. Head X-ray (lateral view) showing the locations and sizes of implanted
ECoG electrodes: one micro-ECoG grid (16 contacts), one regular ECoG grid
(32 contacts), and two 6-contact regular ECoG strips. Inset: side-by-side
comparison of a regular ECoG grid and a micro-ECoG grid showing the
center-to-center electrode spacing (reproduced from Wang et al. 2009 with
permission).

Fig. 3. Major failure modes of microelec-
trode arrays. A: ideal placement, 1–1.5 mm
into cortex. The top of the electrode becomes
encased in a thin layer of arachnoid, which
helps to stabilize the array. B: biological
failures: bleeding, cell death, hardware in-
fection, meningitis, gliosis, and meningeal
encapsulation and extrusion. Macrophages
originating in the subarachnoid space may
mediate the encapsulation response. C: ma-
terial failures: broken electrode tips, insula-
tion leakage, and parylene cracks and delam-
ination. D: mechanical failures: wire break-
age and connector damage (reproduced from
Barrese et al. 2013 with permission).
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Meningeal reactions that separated the array from the paren-
chyma were the most common cause of biological failure
(14.5%). Recordings showed a slow, progressive decline in
spike amplitude, noise amplitude, and number of viable chan-
nels, which predicted complete signal loss by ~8 yr. The
authors concluded that these arrays could potentially record for
many years with the use of implantable wireless systems, better
control of meningeal reactions, and improved insulation
materials.

The slow deterioration of signal quality has been attributed
to tissue encapsulation, inflammatory responses, rupture of the
blood-brain barrier, and the death of neurons resulting from the
insertion, micromotion, or physiological motion of microelec-
trodes (Kozai et al. 2010, 2012; McCreery et al. 2016). Smaller
microelectrodes with coatings of dielectric and bioactive ma-
terials have been shown to result in significant improvements
in this regard (Fattahi et al. 2014; Kozai et al. 2016). Syringe-
injectable microelectronics are also on the horizon (Liu et al.
2015). Given the breadth of research underway in this field, it
seems likely that the quality and reliability of signals recorded
from the CNS will see major improvements over the next few
years.

Activating the Outputs

Nerves innervating limb muscles are relatively accessible,
allowing pulses of electrical current that activate them to be
applied through the skin via self-adhesive, conductive gel
electrodes, conductive rubber electrodes coated with gel, or
metal plate electrodes with an intervening layer of spongy
material that is moistened with water. The gel and water
conform to skin contours and distribute the flow of current
evenly, thus avoiding hot spots of high current density that
would cause skin discomfort, inflammation, and burns. Trans-
cutaneous stimulation is commonly used in surface stimulators
such as TENS and NMES units and functional electrical
stimulators. When the target stimulation sites are deep or close
to the CNS (e.g., cochlear nerves, sacral nerves, and the vagus
nerve), or when external components cause inconvenience, the
stimulator and leads are implanted. The most common implant-
able stimulators, cardiac pacemakers, only deliver a single
pulse every second or so and can therefore be powered by an
implanted nonrechargeable battery that is surgically replaced
every few years. In contrast, the implantable NSs in Tables 1
and 2 have to deliver stimuli at rates as high as 18,000 pulses/s.
As mentioned above, such devices contain batteries or capac-
itors that are recharged either intermittently or continuously by
electromagnetic coupling from an outside coil. The body-worn
sound processors and transmitters in cochlear stimulators have
high energy needs and incorporate batteries that require re-
charging every few hours. In an alternative approach where
only a single channel is needed, an external stimulator delivers
current pulses through the skin between two surface electrodes
and some of the current flows through a fully implanted lead to
a target nerve (the StimRouter) (Deer et al. 2010, 2016; Gan et
al. 2011; Prochazka 2005). In this system, as the stimulator is
external to the body, it can be recharged and serviced easily
and pulse parameters and modes of control can be modified and
updated as the technology improves.

Electrodes in implanted NSs generally consist of insulated
leads with conductive terminals implanted on or adjacent to

neural tissues. The terminals are made of a biologically com-
patible and corrosion-resistant material such as stainless steel,
platinum, or silicon. They may be individually inserted, they
may be attached to a shaft to form a linear array [e.g., deep
brain stimulation (DBS) leads], or they may be mounted on a
substrate to form a matrix (e.g., spinal epidural leads, ECoGs).
In the case of penetrating microelectrode arrays, the impedance
of the conductive tips of the electrodes is reduced with a
variety of conductive and dielectric coatings (Campbell et al.
1991; Maynard et al. 1997).

From a theoretical point of view, the excitation of whole
nerves or individual nerve axons and cell bodies with electrical
stimulation is well understood (Stein and Prochazka 2009). In
practice, the main problem is to activate just those whole
nerves or groups of axons within nerves that elicit the desired
action and not others. For example, when muscle nerves are
stimulated via surface electrodes, afferents in cutaneous nerves
are nearly always activated too, and this can cause discomfort.
If the targeted motor nerves are deep lying, other motor nerves
may be activated, producing unwanted components of move-
ment. Implanted electrodes such as epimysial, intramuscular,
and nerve cuff electrodes with terminals adjacent to, or at-
tached to, the targeted nerves are much more selective, but they
are subject to mechanical failure in the long term. When
targeted and untargeted nerve terminals are in close proximity,
as in the cochlea, selectivity is a major problem. This is
currently the subject of intensive research and development
(Roche and Hansen 2015).

Selectivity is also a crucial issue in implants targeting
structures within the CNS, where ensembles of neurons with
opposite functions may be located less than a millimeter apart.
A good example is provided by attempts to develop intraspinal
microstimulation systems to restore limb movements after
spinal cord injury. Although it has occasionally been possible
to activate single limb muscles or groups of synergists by
stimulating through individual electrodes implanted in or near
spinal motoneuron pools (Mushahwar et al. 2000, 2002), the
more common result, particularly in the weeks and months
after implantation, is a coactivation of multiple muscles
(Moritz et al. 2007; Tai et al. 2003). As a result, intraspinal
microstimulation may elicit whole limb synergies or stiffen the
limb rather than moving it in a controlled manner (personal
observations).

Voluntary control of paretic muscles can be boosted with
nonspecific epidural or transcutaneous stimulation of the spinal
cord (Angeli et al. 2014; Carhart et al. 2004; Dimitrijevic et al.
1998; Gerasimenko et al. 2002, 2015; Harkema et al. 2011;
Herman et al. 2002; Lu et al. 2016; Sayenko et al. 2015),
presumably by activating sensory axons in dorsal roots and the
dorsal columns (Gaunt et al. 2006; Musienko et al. 2012;
Rattay et al. 2000, 2003). Voluntary contractions of different
muscles may also be boosted by intraspinal microstimulation at
levels insufficient to activate any of the muscles in the absence
of volitional drive (Prochazka et al. 2002b) (see Fig. 4). Given
that intraspinal microstimulation recruits branches of sensory
afferents before alpha motoneurons (Gaunt et al. 2006), the
mechanism of boosting in this case may be the same as that for
transcutaneous stimulation of the spinal cord.

Another example of the importance of selective activation of
neuronal populations is provided by systems designed to treat
bladder-sphincter dyssynergia resulting from spinal cord in-
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jury. Here the descending drive from the pontine micturition
center is absent, and a form of spasticity develops in which
instead of relaxing when the bladder contracts to expel urine
the external urethral sphincter (EUS) also contracts, thus pre-
venting voiding. Experiments in animals with spinal cord
transections showed that sacral ventral root stimulation could
elicit voiding in such cases provided that reflex contractions of
the EUS were abolished by transecting the dorsal roots (Brind-
ley 1977; Heine et al. 1977). The problem of selectivity in this
case is that ventral root stimulation activates not only the

parasympathetic preganglionic axons that elicit bladder con-
tractions but also the larger axons that innervate the EUS.
Fortunately, upon cessation of stimulation, the EUS relaxes
more quickly than the bladder, allowing a few seconds of
poststimulus voiding. In clinical practice, brief trains of stimuli
are repeated until sufficient voiding has occurred (Brindley et
al. 1982; Tanagho et al. 1989). This is clearly not the normal
physiological mechanism of voiding (McGee et al. 2015), yet
the Finetech-Brindley System (Finetech Medical, Welwyn
Garden City, UK) has been implanted in �2,500 people

Table 1. Neurostimulators in approximate descending order of numbers deployed worldwide

Device Sensor Sensed Variable Signal Processing Pulse Generator, Electrodes, Target

TENS and NMES stimulators,
external

N/A N/A N/A External PG and electrodes

Cochlear implant* Microphone Air pressure
variations

Digitizing, filtering,
compressing, encoding

Implanted RF-controlled PG,
multichannel linear electrode array,
auditory nerve endings

Spinal cord epidural stimulator
implant*

N/A N/A Parameter adjustment via
external wireless
programmer

Implanted RF-controlled PG,
multichannel epidural array, dorsal
roots, columns

Sacral nerve stimulator
implant*

N/A N/A Parameter adjustment via
external programmer

Implanted RF-controlled PG, sacral spinal
nerve root

Foot-drop stimulator
(external)*

Under-heel switch or
force sensor or tilt
sensor

Under-heel pressure
or leg tilt

On-off detection or
digitizing, filtering,
threshold detection

External PG and electrodes in garter,
common peroneal nerve

Vagus nerve stimulator
implant*

N/A N/A Parameter adjustment via
external programmer

Implanted or external PG, vagus nerve

Deep brain stimulator implant* N/A (EMG and
accelerometers:
experimental)

N/A (tremor:
experimental)

Parameter adjustment via
external programmer

External PG, midbrain nuclei

Phrenic nerve and diaphragm
pacers (implanted)*

N/A N/A Parameter adjustment via
external programmer

Implanted or external PG, phrenic nerve
cuff or intramuscular electrodes in
diaphragm

Sacral anterior root stimulator
implant*

N/A N/A Parameter adjustment via
external programmer

Implanted RF-controlled PG, sacral
anterior nerve root

Grasp-release stimulators
(external)*

Push-button or
earpiece

Taps, tooth clicks,
head nods

Digitizing, filtering,
threshold detection

External PG and electrodes in brace or
garment, nerves innervating hand
muscles

Grasp-release stimulators
(implant)†

Goniometers or
implanted Hall
effect sensors

Shoulder or wrist
movements

Digitizing, filtering,
proportional control of
outputs

Implanted RF-controlled PG, epimysial
electrodes, nerves innervating hand
muscles

StimRouter implant* N/A or earpiece N/A or tooth clicks Parameter adjustment via
external programmer
or digitizing, filtering,
threshold detection

Implanted lead, external stimulator, skin
electrodes, nerves suppressing pain,
overactive bladder, or restoring hand
function

Foot-drop stimulator
(implant)§

Under-heel force
sensor or nerve
cuff

Under-heel force,
afferent activity

Digitizing, filtering,
threshold detection

Implanted RF-controlled PG, nerve cuff
electrodes, common peroneal nerve

Microstimulator implant§ N/A N/A Parameter adjustment via
external programmer

Implanted BIONs, various nerves

Visual cortex implant§ Video Visual field Image analysis, stimulus
encoding

Implanted RF-controlled PG,
multichannel electrode array, visual
cortex

Retinal implant§ Video, eye position
sensor

Visual field, eye
position

Image analysis, stimulus
encoding, eye position
compensation

Implanted RF-controlled PG,
multichannel electrode array, retinal
ganglion cells

Somatosensory cortex implant§ Force or strain
sensors

Pressure or
movement

Digitizing, filtering,
threshold detection

External PG, intracortical electrode arrays
or ECoGs, cortical cells

Spinal cord epidural stimulator
implant (spatiotemporal)§

Video motion
capture, cortical
electrode arrays

Limb position or
cortical
commands

Image analysis,
digitizing, filtering,
compressing, encoding

Implanted RF-controlled PG,
multichannel epidural array, dorsal
roots, dorsal columns

Intraspinal microstimulation
(limb movement)§

External goniometers Limb position Digitizing, filtering,
threshold detection

Implanted penetrating semimicroelectrode
arrays

Intraspinal microstimulation
(bladder control)§

Bladder and
sphincter pressures

Urethral pressure
sensor

Parameter adjustment to
effect

Implanted penetrating semimicroelectrode
arrays

Intraspinal microstimulation
(respiration)§

EMG Genioglossus EMG Parameter adjustment to
effect

Implanted penetrating semimicroelectrode
arrays

PG, pulse generator; N/A, not applicable. *Commercially available, †discontinued commercially, §experimental.
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(Rijkhoff 2004), the majority of whom were able to void using
their stimulator with residual volumes �30 ml and conse-
quently were freed from catheter usage, which reduced the
incidence of urinary tract infections (Martens et al. 2011; Van
Kerrebroeck et al. 1993). Some recipients reported stimulator-
driven erections and defecation (Egon et al. 1998).

The problem of activating neuronal populations additional to
those intended was also encountered in numerous studies
evaluating intraspinal microstimulation to treat bladder-sphinc-
ter dyssynergia (Gaunt and Prochazka 2006; Grill et al. 1999;
Jonas et al. 1975a, 1976; Jonas and Tanagho 1975; Nashold et
al. 1971a; Tai et al. 2004; Tanagho 1988). In the initial studies
in lightly anesthetized dogs and cats, partial voiding could be
elicited by stimulation within the sacral spinal cord, but blad-
der contractions were usually accompanied by EUS contrac-
tions (Friedman et al. 1972; Jonas et al. 1975a, 1975b). It was
recognized that intraspinal microstimulation at separate sites

would be needed to activate the bladder and at the same time
inhibit the EUS. Poststimulus voiding (see above) was pro-
posed as an intermediate solution (Jonas and Tanagho 1975).
Between 1970 and 1980, 27 people with spinal cord injury
were implanted with pairs of sacral intraspinal electrodes
(Nashold et al. 1982). They remain the only recipients of
intraspinal electrodes in the world. In most cases, stimulation
produced some voiding, but the bladder-sphincter coactivation
seen in the animal experiments remained a problem. Partial
sphincterotomies improved voiding in some of the implanted
people. The detailed outcomes of these human trials have been
reviewed elsewhere (Gaunt and Prochazka 2006; Nashold et al.
1981).

Studies of intraspinal microstimulation for bladder control
resumed in a number of centers in the late 1990s. In lightly
anesthetized cats, interleaved pulse trains were delivered via
implanted microelectrodes to the sacral parasympathetic nu-
cleus to produce bladder contractions (de Groat 2006; Grill et
al. 1999) and to the dorsal gray commissure to relax the EUS
(Blok and Holstege 1998; Grill et al. 1999). The present author
and his colleagues were involved in a related study in awake
animals (Gaunt and Prochazka 2008). Although the combined,
interleaved stimulation of the above sites sometimes elicited
the desired combination of increased bladder pressure and
decreased EUS pressure, it rarely resulted in complete voiding.
More commonly, coactivation of the bladder and EUS oc-
curred, and so the method was deemed insufficiently reliable
by the present author and colleagues to justify clinical trials
(Gaunt and Prochazka 2008). In retrospect, it was known from
neurophysiological experiments that some interneurons in the
dorsal gray commissure increase their firing during voiding and
inhibit EUS motoneurons, while others decrease their firing

Table 2. Neurostimulators: studies

Device References

TENS, NMES TENS: Catley et al. (2015); Johnson et al. (2015)
NMES: Sheffler and Chae (2007)

Cochlear implant* Clark (1999); Gates et al. (1995); Roche and Hansen (2015)
Spinal cord epidural stimulator (neuromodulation)* Cruccu et al. (2016); Health Quality Ontario (2005); Kumar et al. (2007); Wolter (2014)
Sacral nerve stimulator Al Asari et al. (2014); Gupta et al. (2015); Li et al. (2016); Moya et al. (2016)
Foot-drop stimulator (external)* Bethoux et al. (2014); Liberson et al. (1961); O’Dell et al. (2014); Stein (1998); Stein et al.

(2006)
Vagus nerve stimulator* Kennedy and Schallert (2001); Révész et al. (2016); Yuan and Silberstein (2016a, 2016b,

2016c)
Deep brain stimulator* Benabid et al. (2006); Khobragade et al. (2015); Mazzone et al. (2016); Nardone et al. (2014)
Phrenic nerve and diaphragm pacers* Romero et al. (2012); Santangeli and Marchlinski (2015)
Sacral anterior root stimulator implant* Brindley (1974, 1977); Heine et al. (1977); McGee et al. (2015); Tanagho et al. (1989)
Grasp-release stimulators (external)* Alon et al. (2007); Buick et al. (2016); Nathan (1994); Prochazka (2002); Prochazka et al.

(1996, 1997a)
StimRouter implant* Deer et al. (2010, 2016); Gan et al. (2011); Prochazka (2005)
Grasp-release stimulators (Freehand implant)† Knutson et al. (2012); Peckham et al. (1980, 1981); Peckham and Kilgore (2013)
Foot-drop stimulator (implant)§ Haugland et al. (1994); Hoffer et al. (2005); Jeglic et al. (1970); Martin et al. (2016, 2017);

Taylor et al. (2016); Waters et al. (1975)
Implanted microstimulators§ Burridge and Etherington (2004); Loeb et al. (2004, 2006); Richmond et al. (2000); Weber et

al. (2005)
Visual cortex implant§ Brindley (1974); Brindley and Lewin (1968); Dobelle et al. (1976); Lewis et al. (2015)
Retinal implant§ Barry et al. (2012); da Cruz et al. (2016); Rachitskaya and Yuan (2016)
Somatosensory cortex implant§ Flesher et al. (2016); Kim et al. (2015); Shaikhouni et al. (2013)
Spinal cord epidural stimulator (spatiotemporal)§ Capogrosso et al. (2016); Wenger et al. (2016)
Intraspinal microstimulation for bladder control,

limb movement and respiratory pacing§
Bladder: Gaunt and Prochazka (2006); Grill et al. (1999); Jonas et al. (1976); Nashold et al.

(1971b, 1981); Pikov et al. (2007); Tai et al. (2004)
Limb movement: Holinski et al. (2013); Mushahwar et al. (2000); Prochazka et al. (2001)
Respiration: Mercier et al. (2017)

*Commercially available, †discontinued commercially, §experimental.

Fig. 4. Schematic showing how steady intraspinal microstimulation at a level
close to threshold for activating motoneurons that elicit muscle contractions
could boost descending commands to those motoneurons and muscles in a
person with spinal cord injury (reproduced from Prochazka et al. 2002b with
permission).
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during voiding and excite EUS motoneurons (Buss and Shef-
chyk 2003). Presumably, when intraspinal microstimulation in
the dorsal gray commissure activated more of the latter than the
former interneurons the EUS contracted, exacerbating bladder-
sphincter dyssynergia rather than reducing it.

In a separate study, coordinated bladder contraction and
EUS relaxation was elicited in cats lightly anesthetized with
propofol by intraspinal microstimulation in, or just dorsal or
lateral to, the dorsal gray commissure (Pikov et al. 2007).
Voiding was elicited in two-thirds of the implanted animals,
though in nearly all cases the voiding was incomplete. Stimu-
lation at closely adjacent sites could elicit EUS contraction
rather than relaxation, as found in the previous studies. The
effects on the bladder and the EUS could reverse when the
bladder filled. Three of the animals were tested after a low-
thoracic spinal cord transection. The voiding responses to
intraspinal microstimulation were maintained. Unlike humans,
however, spinalized cats do not develop sustained bladder-
sphincter dyssynergia, and therefore it is unclear whether
intraspinal microstimulation would have the same effects in
humans with spinal cord injury. Setting aside the difficulties
and uncertainties, it may be possible in the future to use arrays
of multicontact microelectrodes to select a small number of
specific stimulation sites that produce reliable voiding in spinal
cord-injured people.

Other, less invasive approaches to this problem that target
the pudendal nerve have been explored. The pudendal nerve
contains motor axons that innervate the EUS and axons that
transmit sensory input from the pelvic floor, urethra, and
external genitalia to the sacral spinal cord. The sensory input
can either inhibit or facilitate bladder contractions, depending
on its source (McGee et al. 2015). Selective stimulation of the
sensory and motor branches of the pudendal nerve with specific
amplitudes, rates, and patterns has been used either to inhibit
the EUS and facilitate bladder contraction for voiding or to
inhibit the bladder and activate the EUS to maintain continence
(Boggs et al. 2006a, 2006b; Lee and Creasey 2002; McGee et
al. 2015; Yoo et al. 2007; Yoo and Grill 2007). High-frequency
blockade of the pudendal nerve to relax the EUS is another
promising line of investigation (Bhadra et al. 2006; Boger et al.
2008; Kilgore and Bhadra 2004; Tai et al. 2007a, 2007b). It
was shown recently in chronically spinalized animals that
activation and blockade of the pudendal nerve can be achieved
with the StimRouter system (Gaunt and Prochazka 2009). This
may provide a low-cost type of neuroprosthesis for either
maintaining continence or eliciting voiding, as only one or two
leads would need to be implanted.

Failures and Successes

Most therapeutic interventions in biology are not always
completely successful, and neural engineering interventions
are no different. Some of the obstacles have been discussed
above. To summarize, the most common problems are 1) to
connect the recording or stimulating device to the target neu-
rons and only those neurons; 2) to maintain this connection
over long periods of time; 3) to achieve these outcomes without
damaging the target or surrounding tissues; 4) to process the
recorded signals and the stimulus trains so that they lead to
useful outcomes; 5) to overcome or compensate for connective
tissue encapsulation; and 6) to avoid infection. Failure reports

on commercial NSs are available in the Manufacturer and User
Facility Device Experience (MAUDE) database of the US
Food and Drug Administration (Food and Drug Administration
2017).

What has been the impact on people’s lives of neural
engineering devices? Cardiac pacemakers are not strictly neu-
ral prostheses, but they activate highly specialized cardiac
muscles that have nervelike properties and many aspects of
their design are common to those in neural prostheses. The
benefits of cardiac pacemakers are well known: they have
extended the lives and quality of life of hundreds of thousands
of people.

The cochlear implant has provided functional hearing in
over 300,000 deaf people. The history of its development over
the last 60 years, its clinical adoption in many countries, and
the controversies that have swirled around it are excellently
reviewed in a book written by a sociologist faced with deciding
whether his two deaf children should receive implants (Blume
2010). In the 1950s and 1960s there were concerns about the
safety of implanting electrodes inside the cochlea, in relation to
infection and the possible destruction of residual hearing, but
as the devices and implant surgery improved the rate of adverse
events has declined to below 5% (Farinetti et al. 2014).
Nonetheless, lifetime follow-up is needed to detect and treat
complications (Terry et al. 2015). In the early 1970s, neuro-
physiologists, finding that auditory nerve axons responded to
sound differently than to electrical stimulation, were skeptical
that electrical stimulation through one or more electrodes
would ever produce useful hearing, and they recommended
against proceeding in the absence of further basic research
(Kiang and Moxon 1972). However, the clinicians, engineers,
and manufacturers involved pressed ahead vigorously. Various
electrode designs, speech encoding algorithms, and stimulation
patterns were developed and tested in successive generations of
devices (Roche and Hansen 2015). The current state of play,
after a half century of technical development and clinical
experience, is that a sizable proportion of implant recipients
show remarkable hearing performance, including open-set
speech recognition, acquisition of language skills, and even
music appreciation (Roche and Hansen 2015).

To the surprise of those not directly involved, segments of
the deaf community opposed the cochlear implant, particularly
in relation to its application in children. Their greatest concern
was that the cochlear implant undermined Deaf Culture. To
quote Blume: “membership in the Deaf Community is psycho-
logically and socially beneficial in itself. . . . parents of children
newly diagnosed as deaf may not take the trouble to learn to
sign language. However much or however little the child might
ultimately profit from the implant, it would be deprived of
access to language for a vital period of its early life.” The
contrary point of view is that a deaf child not in receipt of a
cochlear implant would be deprived of a level of hearing that
in many cases has led to the acquisition of language through
auditory means. The normal procedure is to implant a device
on one side first, which reduces the risk of abolishing residual
hearing. Furthermore, sign language and lip reading may still
be taught, as recommended for example by the French National
Consultative Ethics Committee on Health and Life Sciences
(CCNE).

The lesson here is that it is important for neural engineers to
understand not only the neurophysiology but also the relevant
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societal and psychological factors when developing novel in-
terventions. At one of the first conference presentations on
brain-machine interfaces, an audience member with quadriple-
gia told the present author “I need brain electrodes like I need
a hole in the head.” But actually it was neither the trephination
nor the implants that he was averse to, it was the large
connector attached to the recipient’s head. If the device were
fully implanted and invisible, he felt it might be acceptable and
useful. Most users of assistive devices do not want to attract
attention to their disability. Recognition of this factor has led to
a focus on the design of less obtrusive and more cosmetically
appealing neural prostheses (Kilgore et al. 2001).

Needless to say, the cost-benefit ratio is crucial and this goes
well beyond purely monetary costs. For example, stimulator
garments can improve upper limb function to some extent in
people living with spinal cord injury, but if they take longer
than a minute or two to don, they fall into disuse (personal
observations). People with hemiplegia learn to perform many
tasks one-handed, so any improvement in function of their
affected hand has to be very substantial to result in a favorable
cost-benefit ratio (Buick et al. 2016). Questionnaires that mea-
sure user satisfaction with assistive devices can provide useful
information in this regard (Day et al. 2002; Demers et al. 2002;
Jutai and Day 2002).

Neurophysiological Insights Arising from Neural
Engineering Research and Development

Given the close relationship between neurophysiology and
neural engineering, it was only to be expected that experience
gained from the practical use of NSs and BCIs would lead to
fundamental neurophysiological insights. Let us consider a few
interesting examples.

Information conveyed by the relative timing of sensory
inputs. Interaural time differences of stimulation of �100 �s
with bilateral cochlear implants improve speech and music
perception, showing that the detection and decoding of minute
differences in timing, presumably by neurons in the cochlear
nuclei, lateral geniculate body, and auditory cortex, is an
important mechanism, not only for directional discrimination
of sound sources but also in higher-level processing of com-
plex sounds (Laback et al. 2015).

Information content, modulation, and feedback effects of
proprioceptive signals. It is still not entirely clear how propri-
oceptive input from mammalian muscle spindles is modulated
and used by the CNS to control normal voluntary movement.
Neurographic recordings in awake humans have resulted in a
number of different ideas about the way the CNS uses gamma
fusimotor action to modulate spindle afferent stretch sensitiv-
ity. There is evidence for alpha-gamma coactivation, which
serves to maintain spindle afferent firing during active muscle
shortening (Hagbarth and Vallbo 1969; Matthews 1970; Proske
and Gandevia 2012). There is also evidence for predictive
gamma biasing action to compensate for future muscle length
changes (Dimitriou and Edin 2010; Ellaway et al. 2015; Taylor
et al. 2006). Neurography needles are easily dislodged, which
has limited the freedom of movement in the human data
(Prochazka and Hulliger 1998). Recordings from dorsal root
afferents during a wide range of rapid, unrestricted movements
in animals have tended to support a simpler, kinesthetic role for
muscle spindles (Cody et al. 1975; Cody and Taylor 1973;

Goodwin and Luschei 1975; Prochazka et al. 1976), whereby
in addition to there being an alpha-linked component of gamma
activity there is an additional component that is related to the
difficulty, novelty, and context of the motor task (“fusimotor
set”) (Prochazka 2015b; Prochazka et al. 1985; Prochazka and
Ellaway 2012).

The latest recordings from sensory afferents in freely mov-
ing animals were obtained in the context of using dorsal root
recordings as feedback signals to control motor NSs. It was
found that signals from as few as 10 afferents enabled a fairly
accurate reconstruction of the kinematics of a whole limb
during free locomotion (Rigosa et al. 2011; Weber et al. 2006,
2007). Most of the relevant information was derived from the
signals from muscle spindle afferents, which supports the idea
that muscle spindles provide kinematic information. In addi-
tion, it became apparent from modeling studies that a crucial
role for proprioceptive feedback is to switch the locomotor
pattern generator from generating stance to generating swing
and back at just the right time in the step cycle (Cruse 1990;
Cruse and Warnecke 1992; Prochazka 1993; Prochazka and
Yakovenko 2007a, 2007b). Brain control of balance and pos-
tural reactions has been shown to depend in part on proprio-
ceptive input, and recent experiments in humans subjected to
postural threats indicate that under these circumstances fusimo-
tor input sensitizes muscle spindles, which increases the sen-
sitivity of postural reflexes (Davis et al. 2011; Horslen et al.
2013).

Positive force feedback. Another role for proprioception is to
assist in load compensation, for example in supporting the
weight of the body during the stance phase of locomotion.
There is some debate as to the relative contributions of stretch
reflexes and centrally generated drive in this case (Pearson
2004; Prochazka et al. 2002a). The Pearson laboratory has
provided evidence that during locomotion reflexes mediated by
extensor Golgi tendon organ afferents may generate significant
levels of load-bearing extensor force (Donelan and Pearson
2004). This implies positive force feedback control, a mecha-
nism supported by earlier data showing that whereas in static
postures extensor motoneurons are inhibited by input from
homonymous tendon organ afferents, during locomotion there
is a reflex reversal such that tendon organ feedback becomes
excitatory (Donelan and Pearson 2004; Pearson 2004). In
technology, positive feedback is usually avoided, because it
can lead to instability. On the other hand, when muscles
shorten they produce progressively less force in response to a
given increase in neural drive, and this has the effect of
reducing the loop gain of positive force feedback to below the
level that results in instability. From a theoretical point of view,
positive force feedback to limb extensor muscles is in fact an
effective load-compensating mechanism unless muscle length
is constrained, as in isometric contractions (Prochazka et al.
1997b, 1997c, 2002a).

Spatiotemporal activation of spinal motoneuron pools dur-
ing locomotion. In attempts to elicit locomotion with arrays of
intraspinal electrodes (Mushahwar et al. 2000), the need arose
for an accurate three-dimensional map of the location of
motoneuron pools in the lumbosacral spinal cord. Previously
published histological data (Vanderhorst and Holstege 1997)
were digitized, and a spatiotemporal animation of the activa-
tion of motoneuron pools was developed by combining this
model with the known EMG activity of the main hindlimb

1300 NEUROPHYSIOLOGY AND NEURAL ENGINEERING

J Neurophysiol • doi:10.1152/jn.00149.2017 • www.jn.org

 by 10.220.32.246 on A
ugust 21, 2017

http://jn.physiology.org/
D

ow
nloaded from

 

http://jn.physiology.org/


muscles in normal locomotion (Yakovenko et al. 2002). This
approach has since been used to model motoneuronal activa-
tion in human and rodent spinal cords (Ivanenko et al. 2006;
Wenger et al. 2016). The animation revealed a rostrocaudal
oscillation of motoneuronal activity within the spinal cord
during the locomotor step cycle. The first impression was of a
wave of activity propagating smoothly up and down the spinal
cord (Yakovenko et al. 2000). Waves of activity traveling
along the neuraxis had previously been suggested as control-
ling the orderly sequencing of muscles in locomotion in dif-
ferent species, particularly in limbless animals that move by
undulating their bodies (Orlovsky et al. 1999). It was further
suggested that the neural network producing these traveling
waves had been conserved in the evolutionary transition from
aquatic to terrestrial locomotion (Bem et al. 2003; Ijspeert et al.
2007). On closer analysis of the spatiotemporal model, it
became evident that the rostrocaudal shifts of activity at the
transitions between the swing and stance phases of locomotion
were quite abrupt (Yakovenko et al. 2002). This suggests that
the evolutionary modification of the spinal locomotor network
from limbless to limbed animals must have involved a speed-
ing up of the migrations of activity at the swing-stance and
stance-swing transitions. A further insight came from neuro-
mechanical modeling, which indicated that the stance phase of
the locomotor step cycle lasts longer than the swing phase for
biomechanical reasons and that the central pattern generator
may be tuned to produce this relationship by virtue of persis-
tent inward currents in timing interneurons (Prochazka et al.
2017; Prochazka and Yakovenko 2007a, 2007b; Spardy et al.
2011a, 2011b).

Hidden layer neurons and causality in corticospinal signals.
Regarding the cortical control of movement, in BCI research
the firing of ensembles of motor cortical cells has been used to
decode a variety of behavioral states: intention to perform a
mouse click, attention, change in target direction, forward/
backward walking direction, hold/release periods, grasp type,
and movement onset (Velliste et al. 2014). When rest and
active hold states in monkeys performing center-out arm move-
ment tasks were compared, it was possible to distinguish these
states from the firing of ensembles of neurons but not from
those of single neurons. Furthermore, when neuronal popula-
tion vectors were used to move displayed cursors to targets, on
occasion the monkey rested its arm while still controlling
cursor movement (Schwartz AB, personal communication).
This is in line with a previous study that showed that the firing
of neurons in motor areas of the cerebrum could be dissociated
from actual movement performance, indicating that some,
perhaps most, neurons in the cortex do not directly control
spinal motoneurons (Alexander and Crutcher 1990). Rather,
they might be the equivalent of “hidden layer” neurons in
artificial neural nets, which are indirectly involved in control-
ling input-output behavior but whose activity is not obviously
related to either inputs or outputs.

What is activated by electrical stimulation of CNS structures?
For many years it was assumed that epidural spinal cord
stimulators activated axons in the dorsal columns and interneu-
rons within the gray matter of the spinal cord. In fact, these
devices were originally called dorsal column stimulators. It
was then shown that epidural spinal stimulation activates axons
in dorsal root filaments at lower amplitudes than axons in the
dorsal columns (Ladenbauer et al. 2010; Rattay et al. 2000,

2003). Similarly, the identity of the neurons stimulated by DBS
electrodes is unclear, which has impeded progress in under-
standing the mechanism of the therapeutic effects of DBS
(McIntyre et al. 2004; Murrow 2014; Zhang and Grill 2010).
Intraspinal microstimulation, originally assumed to activate
alpha motoneurons and interneurons within a short distance of
the electrode tips, was found to antidromically activate nearby
branches of sensory axons at lower stimulus intensities and
thereby to synaptically excite motoneurons in motoneuron
pools spanning several spinal segments (Gaunt et al. 2006).
This may explain how focal intraspinal stimulation can spread
to activate many of the motoneurons of a synergistic muscle
group.

What variable(s) are feedback controlled during movement?
BCI recordings in human tetraplegic participants have pro-
vided insight into cortical feedback control (Willett et al.
2017). In center-out cursor-control tasks, neural population
activity gradually declined as the cursor approached the target
from afar, then decreased more sharply as the cursor came into
contact with the target. Predictive corrections to the cursor’s
velocity were made during movement, and feedback correc-
tions continued after the cursor reached the target. These
observations are relevant to the basic question “what vari-
able(s) does the nervous system control in limb movements?”
(Stein 1982). Increasing the amplitude of electrical stimulation
in the midbrain of the decerebrate cat increases the velocity of
locomotion (Shik et al. 1966). Computer simulations have
supported the idea that locomotor velocity is the basic com-
mand sent from supraspinal areas to the spinal locomotor
pattern generator (Prochazka and Ellaway 2012). The BCI
results suggest that velocity is also the controlled variable
during arm movements, and that there may be a switch to
positional or even force control once a target is reached.

Intermingling of neurons with opposite functions in the CNS.
The conclusion from the experiments involving intraspinal
microstimulation to elicit bladder voiding, namely that neurons
within the same small region of the spinal cord can have very
different and even opposite functions (Gaunt and Prochazka
2006), has a broader implication. Most imaging methods that
show the “lighting up” of regions of the CNS do not have the
resolution to differentiate between functionally different sub-
populations, and therefore should be interpreted with caution.

Therapeutic carryover effects. Therapeutic electrical stimu-
lation and functional electrical stimulation in people living
with stroke and spinal cord injury have been shown to have
carryover therapeutic effects (Andrews and Wheeler 1995;
Shealy 1975; Vodovnik 1981) especially when performed in
association with voluntary exercise training (Cauraugh et al.
2005; Cauraugh and Kim 2002, 2003; de Kroon et al. 2002;
Kowalczewski et al. 2011; Musienko et al. 2012; Page et al.
2012; Popovic et al. 2006). Carryover effects lasting a few
hours may result from short-term changes in the energetics of
neuromuscular activation, whereas carryover effects lasting
weeks or months have been attributed to muscle strengthening,
neural plasticity, or both (Field-Fote 2004; Stein et al. 1992;
Thomas and Gorassini 2005). Long-lasting carryover effects
are also seen after TENS and sacral nerve stimulation for pain
control, posterior tibial nerve stimulation to treat overactive
bladder (Peters et al. 2010), and vagus nerve stimulation for
epilepsy and depression (Yuan and Silberstein 2016a, 2016b,
2016c). The neurophysiological mechanisms involved are un-
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clear and not necessarily the same in each case. In recent years
they have been equated with neuromodulation, a process in
which the activation of intracellular second messengers
changes the responses of populations of neurons to subsequent
inputs. Neuromodulation has a slower onset than direct iono-
tropic synaptic activation of neurons and is therefore associated
with metabotropic synaptic transmission (Follesa et al. 2007;
Yuan et al. 2016). It is interesting that despite TENS having
become a standard therapeutic modality worldwide, the evi-
dence for its efficacy in randomized controlled trials is still
deemed inadequate and its presumed neurophysiological mech-
anisms of action remain uncertain (Catley et al. 2015; Johnson
et al. 2015).

Future

In recent years several ambitious, multicenter neural engineer-
ing projects have been launched, with much publicity and large
amounts of funding, These include the multiagency BRAIN
Initiative (https://www.braininitiative.nih.gov), the Targeted Neu-
roplasticity Training Program (http://www.darpa.mil/program/
targeted-neuroplasticity-training), and the European Human Brain
Project (https://www.humanbrainproject.eu/en). These initiatives
have been criticized by some as having unrealistic goals, ignoring
basic neurophysiology, and depriving mainstream neuroscience
researchers of funding. On the other hand, the goals are
inspirational and will probably attract many young, innovative
researchers to get involved in projects, some of which will fail
and others will succeed, not always in the manner anticipated.
Time will tell whether this shift in the organization and funding
of neural engineering and neuroscience, which is taking place
worldwide, will have been beneficial or not.

This also raises the interesting question, At what point of
neurophysiological knowledge (or ignorance) is human im-
plantation of devices justifiable? Recall that the cochlear stim-
ulator was being implanted in deaf people in the early 1970s,
when some expert neurophysiologists had concluded that “the
present state of basic knowledge and technical competence
argues strongly for additional preliminary work on animals”
(Kiang and Moxon 1972). And yet within a few years, recip-
ients were able to comprehend speech without visual input
(Scott 2006). Recall too that deep brain stimulators have been
implanted in tens of thousands of people without a clear
understanding of the mechanism of action, yet they are often
highly effective in suppressing tremor and unlocking rigidity
(Birdno et al. 2014; Deeb et al. 2016). Perhaps the answer is
that when the need is sufficiently pressing, when there is a
reasonable chance of success based on the existing knowledge,
and when the risks are judged to be acceptable, human trials
are justified.

Conclusions

Neural engineering is a fast-growing, multidisciplinary field
that has its foundations in neurophysiology and electrical
engineering. The dawn of the transistor age in the late 1950s
triggered an explosion of innovation, particularly with respect
to implanted devices. In the intervening half century, there has
been much progress in the development of materials, minia-
turization, computerization, wireless communication, surgery,
and, last but not least, the understanding of the underlying
neurophysiological mechanisms. NSs are used clinically in

their hundreds of thousands and in some cases have become the
standard of care for specific neural disorders. None of this
would have been possible without a detailed knowledge of
basic neurophysiology. Neural engineering is repaying the debt
with new basic knowledge and insight. Regarding the future,
some developments are predictable. For example, there will no
doubt be further miniaturization of electronics and improve-
ments in the biocompatibility of implanted materials, in signal
acquisition and processing, in surgical implantation, in selec-
tivity of stimulation, and in the reliability and longevity of
devices. Many problems await solutions. Past history indicates
that some of these solutions will come from unexpected direc-
tions. The growth predictions for NSs indicate a bright and
fascinating future for this domain of applied neurophysiology.
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